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SUPPLEMENTARY NOTE 1: TOPOLOGICAL PHASE
TRANSITIONS

In this part of the Supplemental Information, we provide
further details concerning the interaction-induced topological
phase transitions discussed in the main text. We recall that the
parameters ∆ = 0.85 t and α = 0.5 t are fixed henceforth.

Gap closure and interaction-induced nature of TBOW2/3

The principle of adiabatic correspondence, which states
that groundstates that can be adiabatically deformed into each
other belong to the same phase of matter, can be used as a pri-
mary tool to group groundstates according to a common set
of underlying properties. This principle lies at the heart of
the modern definition of topological insulators as insulating
phases of matter characterized by a topological invariant that
cannot be adiabatically connected to the atomic limit (i.e. triv-
ial band insulator). In the context of SPT phases, this principle
can be used to delimit the region in parameter space hosting
a correlated topological phase, as it must be separated from
other states of matter via an abrupt phase transition (i.e. first-
order discontinuous transition, or second-order phase transi-
tion marked by a gap closure) where the adiabaticity is lost.

In the present context, we have clearly shown in the main
text that the TBOW2/3 can be connected to the trivial BOW2/3
via a discontinuous first-order transition. Additionally, we
mentioned that for stronger transverse fields, this transition
becomes a continuous second order transition that separates
these phases from an intermediate region where inversion
symmetry is broken. It is interesting to note that, although
the groundstate of the system preserves a trimerized unit cell
to satisfy the underlying Peierls mechanism and minimize its
energy, the gap of the system does indeed close in this in-
termediate region, which guarantees that the TBOW2/3 is a
well-defined phase that cannot be adiabatically connected to
the trivial BOW2/3. In order to show the occurrence of such
a gap closure, we use entanglement spectroscopy in the ther-
modynamic limit.

Figure 1 shows the scaling of the entanglement entropy
S(ρ`) = −Tr{ρ` log(ρ`)}, where ρ` is the reduced density
matrix for a bipartition of the groundstate into two blocks.
This entanglement entropy is expressed in terms of the in-
finite matrix-product state (iMPS) correlation function ξ [1]
for different values of the bond dimension D and for differ-
ent Hubbard interactions U , where we set β = 0.03t. If the
ground state is gapped, this entropy saturates [1]. On the con-
trary, in a gapless critical point/region, the following scaling

Supplementary Figure 1. Entropy scaling: In (a), (b) and (c) we
show the entanglement entropy S for an iMPS as a function of the
correlation length ξ for a state in the BOW2/3, intermediate region
and TBOW2/3, respectively. In the BOW phases, the entropy satu-
rates, signaling a gapped ground state. In the intermediate region, the
scaling is logarithmic. Different points are calculated using different
bond dimensions D, and we set β = 0.03t. (d) Evolution of the Z2
field on the bonds of the unit cell 〈σ z

k,k+1〉, with k ∈ {1,2,3} in terms
of U . The calculations were performed using an iMPS with fixed
bond dimension of D = 150. The three different phases are separated
qualitatively by two dotted lines.

relation holds

S =
c
6

logξ , (1)

for sufficiently large ξ . To capture this saturation or the log-
arithmic scaling, instead of performing a finite-size scaling,
one may conduct a finite-D scaling, which shows how both
BOW2/3 (Fig. 1(a)) and TBOW2/3 are gapped (Fig. 1(c)). In
the intermediate symmetry-broken region, we find instead a
logarithmic scaling of the entanglement entropy consistent
with a conformal charge c = 1 (Fig. 1(b)). Accordingly, we
can conclude that both phases cannot be adiabatically con-
nected, neither at weak nor at stronger transverse fields. In the
regime of small quantum fluctuations (i.e. weak transverse
fields), a first-order phase transition takes place. For larger
quantum fluctuations (i.e. stronger transverse fields), the gap
closes and a a second-order phase transition occurs via a crit-
ical region where the emergent inversion symmetry is absent.
We note that, when the guiding fields are added in the pump-
ing protocol, the total gap of the system remains open during
the cycle, guaranteeing a well-defined adiabatic pumping.
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SUPPLEMENTARY NOTE 2: ABSENCE OF
FRACTIONALIZATION IN THE EFFECTIVE

SINGLE-PARTICLE PUMPING

In this part of the Supplemental Information, we clarify dif-
ferent aspects of the pumping scheme introduced in the main
text using an effective non-interacting model. We show that,
whereas some qualitative features of the topological pumping
in the Z2 Bose-Hubbard model can be understood through the
non-interacting analogue, the very fractional nature lacks a
non-interacting simile, and must be consider as a direct mani-
festation of the strongly-correlated nature of the TBOW2/3.

Bulk-edge correspondence and Chern numbers

Consider the following non-interacting Hamiltonian,

Ĥeff =−∑
i

ti
(

ĉ†
i ĉi+1 +H.c.

)
(2)

where ĉi and ĉ†
i are fermionic operators. Ĥeff is related to the

hard-core boson limit of the Z2BHM, with U → ∞, and a to-
tally adiabatic or classical Z2 fields (β = 0) that are treated in
a mean-field-like manner. Accordingly, one may consider that
the expectation values 〈σ̂ z

i,i+1〉 behave as external parameters
that can be used to control the effective tunnelling coefficients,
ti = 1+α/t〈σ̂ z

i,i+1〉.
However, we note that in this simplified effective model,

the tunnelings {ti} are free model parameters that can be
changed adiabatically at will. In particular, the effective tun-
nelling strengths are changed following the same path as for
the interacting case (Fig. 4(a) in the main text). Note that the
expectation values 〈σ̂ z

i,i+1〉 extracted from the ground states
throughout the self-adjusted many-body pumping are differ-
ent in general for different unit cells. Being non-interacting,
the Hamiltonian (2) can be exactly diagonalized, and the band
structure can be obtained at any instant of the adiabatic cy-
cle. This calculation leads to the spectral flow shown in Fig-
ure 2(a). Throughout the cycle, the instantaneous energy lev-
els can be arranged into three different bands separated by
two gaps that remain finite through the whole adiabatic path.
Note also that these spectral bands are connected by two in-
gap modes, which correspond to the localized single-particle
edge states crossing at some intermediate instant of the cycle.
Let us highlight that, in contrast to the adiabatic path of the
full interacting model that is composed of three adiabatic cy-
cles, the non-interacting case consists of a single cycle where
the effective tunnelings are periodically modulated.

Fig. 2(b) shows the change in time of the center or mass
(COM) PL(τ), as defined in the main text, for densities ρ =
1/3 and ρ = 2/3, i.e. when the lowest or the two lowest
bands are filled, respectively. We consider a finite chain of
size L = 90, and show that in both cases a discontinuous jump
occurs when the corresponding edge states cross in energy,
where the COM changes by 1 or −1. For ρ = 1/3, before
this instant of time only the left edge state is occupied, while
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Supplementary Figure 2. Effective pumping: (a) spectral flow dur-
ing the adiabatic cycle. At each time τ we draw the energy levels
by diagonalizing the non-interacting effective Hamiltonian (2). We
observe three distinct bands that remain open during the cycle. There
are two energy levels corresponding to the localized edge states in-
side each band gap. These states connect the different bands and
cannot be adiabatically removed without closing the gap. (b) Change
in the center of mass during the cycle for densities ρ = 1/3 and
ρ = 2/3. A discontinuous jump occurs when the edge states in (a)
cross in energy.

it gets empty and the right edge state gets occupied right af-
ter it. This shows the fractionalization of the edge states: if
each possesses a particle number of 1/2, this process changes
the COM by −(−1/2)+ (1/2) = 1. For ρ = 2/3, the oppo-
site process takes place. From this discussion it is clear the
role that the fractionalization of the edge states plays during
the pumping. This pumping appears in both interacting and
non-interacting systems and has topological origin. However,
as described below, the factional pumping can only appear
in interacting systems and is related to the degeneracy of the
ground state. In those situations the fractionalization of the
pumping is a different effect that goes beyond the fractional-
ization of the charge of the edge states.

As explained in the main text, we can calculate the trans-
ported charge in the bulk from the change in the COM at
the discontinuous jumps. We obtain ∆n1/3

L=90 = −0.94 and

∆n1/3
L=90 = 0.94. The fact that these are not totally quantized is

due to finite-size effects, and they would converge to strictly
quantized values in the thermodynamic limit. We thus see
that this effective model allows for a net transport of a sin-
gle quantum of charge accross the bulk, either from the left
edge to the right one, or vice versa. Note however that the
period T of this single-particle cycle corresponds to the three
consecutive cycles 3T of the many-body pumping described
in Fig. 4(a) in the main text. Therefore, the integer nature of
the pumped single-particle charge after one cycle is consistent
with the integer value of the pumped many-body charge after
three cycles described in the main text.

As noted in the main text, the transported charge in an
infinite chain over one period, ∆n, gives access to topolog-
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ical phases in higher dimensions. In this case, the pumped
charge can be related to the Chern number of an extended
two-dimensional system, where time is taken as a synthetic
dimension [2], namely

∆n =−∑
n

cn, cn =
1

2π

∫ T

0
dτ

∫
BZ

dqΩ
n
qτ , (3)

where cn is the Chern number corresponding to the nth band,
and the sum is taken over completely filled bands. The Chern
number is calculated as a surface integral in the parameter
space formed by the time t and momentum q, which has the
shape of a torus, and allows to define a Berry curvature

Ω
n
qτ = i

(〈
∂un

∂q

∣∣∣∣ ∂un

∂τ

〉
−
〈

∂un

∂τ

∣∣∣∣ ∂un

∂q

〉)
(4)

with |un〉 the n-th Bloch eigenstate. A similar relation to
Eq. (3) holds also in the presence of disorder and interactions
by introducing twisting fields [3]. We can calculate the asso-
ciated Chern number for the effective model (2) in the thermo-
dynamic limit using time as a synthetic dimension. Using the
efficient numerical method [4], we obtain c1 = 1 and c2 =−2,
for the first and second bands, respectively. Using Eq. (3), we
obtain the respective charges, ∆n1/3 =−1 and ∆n2/3 = 1.

This quantized pumping allows to shed light on the origin
of the edge states of the trimerized configuration. In contrast
to the dimerized half-filling model, the topological origin of
the single-particle edge states in this case is not guaranteed a
priori due to the lack of chiral/sub-lattice symmetry [5]. How-
ever, they can be understood as remains of edge states in the
extended two-dimensional system, which are indeed topolog-
ically protected even in the absence of chiral symmetry [6].
This is clear from the spectral flow represented in Fig. 2(a),
which can be seen as the band structure of a two-dimensional
system in a cylindrical geometry [7]. There, the edge states
connect the bands separated by a gap, and this means that
they cannot disappear under perturbations that do not close
the gap. Although this spectral flow can not be computed in
the interacting case, we expect the argument to hold based on
the quantization of the pumped charge, and the extension of
Eq. (3) for many-body systems [3]. Therefore, the observation
of the integer pumped charge in the Z2-Bose-Hubbard model
can be used as a bulk-boundary correspondence that clarifies
the topological origin of the many-body edge states.

Fragility of the non-interacting fractionalized pumping

A crucial difference between the many-body pumping pre-
sented in the main text, and the effective pumping described
in this Supplemental Information is that, for the latter, the ro-
bust fractionalization of the pumped charge is absent. The
main reason behind this is that the ground state of the ef-
fective Hamiltonian (2) is not degenerate in the topological
phase. Therefore, the adiabatic path can not be decomposed
in three independent periodic cycles as in the protocol pre-
sented in the main text. As a consequence the transported

Supplementary Figure 3. Loss of fractionalization: (a) Change in
the unit-cell tunneling tk during two pumping cycles which are equal
up to an adiabatic deformation. (b) Spectral flow for each cycle. (c)
Change in the center of mass during the two cycles. Even if for the
first case the transported charge at fractions of the cycle might seem
quantized, the second case shows that this is not necessary the case.

charge after a time T/3 is not necessarily quantized to 1/3,
only the total charge transported at T is quantized to 1. This
can be seen clearly in Figure 3. There, we present two adia-
batic pumping cycles, connected by a local deformation. Even
if in the first case the transported charge might seem to be
fractional quantized for fractions of the period, we observe
how this fractionalization is lost in the second deformed cy-
cle. Since the latter is just an adiabatic deformation of the first
one, we conclude that the fractional charge is not topologi-
cally protected. This is different in the many-body pumping
presented in the main text: since the total adiabatic path is
decomposed in three closed cycles, any adiabatic deformation
would preserve the nature of the pumping, which is robust and
quantized to fractional values .
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